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Synchrotron Radiation 
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For a relativistic particle, the total radiated power (S&E 8.1) is 
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In a magnetic field 
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Electron radiates 1013 times 
more than a proton of the 
same energy! 



First Observation of Synchrotron Radiation 
•  The first attempt to observe synchrotron radiation was 

in 1944 at the 100 MeV GE betatron 
•  Because of a miscalculation, they were looking in the microwave 

region rather than the visible (in fact the walls were opaque), so 
although the say an energy decay, they did not observe the 
radiation. 

• Synchrotron radiation was  
first successfully observed  
in 1947 by Elder, Gurewitsch,  
and Langmuir at the GE 70  
MeV electron synchrotron. 
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Effects of Synchrotron Radiation 
•  Two competing effects 

•  Damping 

•  Quantum “heating” effects related to the statistics of the photons 
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Np = Nτ   →   σ ΔE = Nτ ΔE u2
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Power Spectrum of Synchrotron Radiation 
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The power spectrum of radiation is given by 

dP
dω

= P
ω c

S ω
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;      ω c =
3γ 3
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c
ρ

“critical frequency” 

12/4/01 USPAS Lecture 12 5

1. For a separated function lattice, the energy damping time is
approximately equal to the time required for a particle to radiate
all its energy. If Ts

 =revolution period, and Us = energy loss per
turn, then the energy damping time is

τΔE s
s

s
T E

U
≈

2. The equilibrium rms energy spread is approximately the rms
photon energy times the square root of the number of photons
emitted during one damping time. If Ṅ=photon emission rate,

and u2  is the rms photon energy, then the rms energy spread
is

σ τΔ ΔE EN u≈ ˙ 2
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Before we can see where these results come from, however,
we’ll need to introduce some information from electromagnetic

theory.

Features of synchrotron radiation

P=the total power radiated by an electron .The power spectrum  of
the radiation is
dP
d

P S
c cω ω

ω
ω

= ⎛
⎝⎜

⎞
⎠⎟

in which ω γ
ρc

c= 3
2

3
 is called the critical frequency. ρ = p

eB
 is the

bending radius of the electron. The function S x( ), called the
normalized spectrum, is shown in the next figure.
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This energy is radiated in the form of photons, each of energy
u = hω . Thus, the number of photons radiated per second, in the
energy interval du, is

˙( )n u du dP
d

d=
ω

ω
ωh
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So the photon rate spectrum (photons per unit energy per second)
is

˙( )n u P
u

u
u

S u
uc

c

c
= ⎛

⎝⎜
⎞
⎠⎟2

 in which uc c= hω  is the critical energy.
The total number of photons emitted per second is

˙ ˙( )N n u du P
uc

= =
∞

∫
15 3

80
The mean photon energy is

u
N

un u du P
N

uc= = =
∞

∫
1 8

15 30
˙ ˙( ) ˙

and the mean square energy  is
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n = d

N
du  

λc =
2πc
ωc

=
4πρ
3γ 3

uc ≡ !ωc =
3γ 3

2
!c( )
ρ

Differential photon rate 
“critical wavelength” 

“critical energy” 

Modified Bessel 
Function 



Some Handy Numbers (don’t bother to memorize) 
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The total rate is: 

 
N = n(u)

0

∞

∫ du = 15 3
8

P
uc

The mean photon 
energy is then 

 
u =

P
!N
=

8
15 3

uc

The mean square of the 
photon energy is 

  

Us = Pdt∫ = e
2cγ 4

6π0
1
ρ2
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⎛
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⎞
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= e2γ 4

6π0
1
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The energy lost per turn is 
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Example:  The Failed Experiment 
•  In 1944 GE looked for synchrotron radiation in a 100 MeV 

electron beam. 
•  Assume B=1T 

• We have  
•  E≈pc=100 MeV 
•  mc2=.511 MeV 
•  γ=E/(mc2) = 196 
•  (Bρ)=100/300=.333 T-m 
•  ρ=(Bρ)/B=.333 m 
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uc =
3γ 3

2
!c( )
ρ

=
3(196)3(1.97×10−7 )

2(.333)
= 6.6 eV

u =
8

15 3
uc = 2.05 eV

λ u =
hc( )
u

=
1.2
2.05

= .587 µm

eV-m 

eV-µm 

Visible yellow light, NOT 
microwaves 
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It’s important to remember that ρ is not the curvature of the accelerator as 
a whole, but rather the curvature of individual magnets. 

 
Δθ = Δs

ρ
→ ds

ρ∫ = 2π

So if an accelerator is built using magnets of a 
fixed radius ρ0, then the energy lost per turn is 

  
Us =

e2γ 4

6πε0
1
ρ2
ds!∫ =

e2γ 4

6πε0ρ0
1
ρ
ds!∫ =

e2γ 4

3ε0ρ0
For electrons 

 

Us MeV[ ] = .0885
E 4 GeV[ ]
ρ0 m[ ]

uc = !ωc =
3γ 3!
2

c
ρ0

uc keV[ ] = 2.218
E 3 GeV[ ]
ρ0 m[ ]

Ns = "Nτ =
15 3
8

P
uc
τ =

15 3
8

Us

uc
= .1296E GeV[ ]

Example: CESR 

E = 5.29 GeV
ρ0 = 98 m
Us = .71 MeV

u = 8
15 3

uc = .98 keV

u2 = 11
27
uc = 2.0 keV

Ns = 721
photons/turn 

“isomagnetic” 

ρ < R
R



Effects of Synchrotron Radiation 
•  Two competing effects 

•  Damping 

•  Quantum “heating” effects related to the statistics of the photons 
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Small Amplitude Longitudinal Motion 
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θ
Δt

ΔE ≡ ε

		 

dε0
2

dt
=
1
τ s

dε0
2

dt
dt!∫

=−
2
τ s

εP dt!∫ +
1
τ s

"N u2 dt!∫

damping term 
Heating term due to statistical 
fluctuations 

P∝E2 → Particles lose more energy at the 
top of this cycle than the bottom 

Δt

ΔE ≡ ε

Energy lost and smaller amplitude 

Δt

ΔE ≡ ε

Reaccelerate 

Smaller amplitude 

		
dε0

2

dt
=2ε0

dε
dt

=−2ε0P
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ρ

r

ds

dl
dl = ρ + x( )ds = cdt
→ dt = 1

c
ρ + x( )ds

x

Evaluate integral in damping term 

 

εP dt∫ = 1
c

1+ x
ρ

⎛
⎝⎜

⎞
⎠⎟
εP ds∫

≈ 1
c

1+ D ε
ρEs

⎛
⎝⎜

⎞
⎠⎟
εP ds∫

use x = D Δp
p

≈ D ε
Es

		 

P = e4

6πε0m4c5
B2E2→

dP
dE

=2P 1
B0

dB
dE

+
1
E

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

P(ε)=Ps +
dP
dE

ε =Ps 1+2
1
B0

dB
dE

+
1
Es

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ε

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Recall Dependence of field 

dB
dx

= ′B

=κ Bρ( )

dB
dE

= dB
dx

dx
dE

=
κ Bρ( )D

Es

P(ε ) = Ps 1+
2ε
Es

κρD +1( )⎛
⎝⎜

⎞
⎠⎟

Can’t ignore anything!! 
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Putting it all together… 

  

εP dt∫ = 1
c

εPs 1+
ε
Es

D
ρ

⎛
⎝⎜

⎞
⎠⎟
1+ 2ε

Es

κρD +1( )⎛
⎝⎜

⎞
⎠⎟
ds∫

= 1
c

Ps ε + ε 2

Es

2 + 2κρD + D
ρ

⎛
⎝⎜

⎞
⎠⎟
+ ε 3 2D(κρD +1)

Esρ
⎛
⎝⎜

⎞
⎠⎟
ds∫

= 1
c
ε0
2

2Es

Ps 2 + 2κρD + D
ρ

⎛
⎝⎜

⎞
⎠⎟
ds∫

= ε0
2Us

Es

+ ε0
2

2Es

1
c

Ps 2κρD + D
ρ

⎛
⎝⎜

⎞
⎠⎟
ds∫

= ε0
2Us

Es

+ ε0
2Us

2Es

D

= ε0
2Us

2Es

2 +D( )

0 0
ε = ε0 sin 2πν sn +δ( )
ε = ε 3 = 0

ε 2 = ε0
2

2

use 

  

note  1
c

Ps ds!∫ = 1
c

(const) 1
ρ 2 ds!∫

=Us

1
c

Ps 2κρD + D
ρ

⎛
⎝⎜

⎞
⎠⎟
ds!∫ = 1

c
(const) 1

ρ 2 2κρD + D
ρ

⎛
⎝⎜

⎞
⎠⎟
ds!∫

=UsD

where D ≡

1
ρ 2 2κρD + D

ρ
⎛
⎝⎜

⎞
⎠⎟
ds!∫

1
ρ 2 ds!∫



Reminder: Damping + Heating 
•  In general, if I have a simple damping force of the form 

 
the solution is  
 
•  If I add a constant heating term 
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dA
dt

= −λA

A(t)= A0e
−λt = A0e

−t /τ ;   where τ =1/ λ

dA
dt

= −λA+h

dA
A−h / λ

= −λ dt∫∫
→ ln(A−h / λ)= −λt +K
→ A =Ce−λt +h / λ → A(∞)= h

λ
= hτ

		A(0)= A0→C =1−h/λ
→ A(t)= A0e

−λt +
h
λ
1− e−λt( )



Result 
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dε0
2

dt
=−

2
τ s

εP dt!∫ +
1
τ s

"N u2 dt!∫

=−
ε0
2Us

τ sEs
2+D( )+ 1

τ s
"N u2 dt!∫

damping heating 

  

ε0
2 (t)= ε0

2 (0)e−t /τε2 +ε0
2 (∞) 1− e−t /τε2( )

where 1
τ
ε2

=
Us

τ sEs

2+D( )

ε0
2 (∞)=

τ
ε2

τ s
!N u2 dt"∫

The energy then decays in a time 

 

τε = 2τ
ε 2

 1
τε

= Us

2τ sEs

2 +D( )

  

where D ≡

1
ρ2 2κρD+ D

ρ

$

%
&

'

(
)ds!∫

1
ρ2 ds!∫



Longitudinal Damping in a “Normal” Synchrotron 

•  So far we have talked about “separated function”, “isomagnetic” 
lattices, which has 
•  A single type of dipole:  
•  Quadrupoles:  

•  In this case 
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D ≡

1
ρ2

2κρD+ D
ρ

$

%
&

'

(
)ds!∫

1
ρ2
ds!∫

=

1
ρ0
2

D
ρ0
ds!∫

1
ρ0

1
ρ0
ds!∫

=

1
ρ0
2 CαC( )

1
ρ0

2π( )

=
CαC

2πρ0
≈ αC ≪1

1
τε

≈ Us

τ sEs

probably the answer you would 
have guessed without doing any 
calculations. 

κ = 0;ρ = ρ0
κ ≠ 0;ρ =∞



Equilibrium Energy Spread 
• We can relate the spread in energy to the peak of the 

square with  
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σε
2 = ε0

2 (∞) = 1
2
ε0
2 (∞)

=
1
2
τ
ε2

τ s
!Nu2 dt"∫ =

τε
4τ s

!Nu2 dt"∫ =
ES

2Us (2+D)
!Nu2 dt"∫

  

Use P= 1
6πε0

e2c
ρ2 γ

4 , !N =
15 3

8
P
uc

,   u2 =
11
27
uc

2,    uc =
3
2
"γ 3

ρ
c

τε = τ s
2Es

Us (2+D)
,Us =

e2γ 4

3ε0ρ0



•  This leads to 
USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Synchrotron Radiation 17 

  

!Nu2 dt = 55
16 3

e2"cγ 7

6πε0
1
ρ 3
ds#∫#∫

=
55
16 3

e2 "c( )γ 7

3ε0ρ0
2

  

σε
2 =

ES

2Us (2+D)
55
16 3

e2 !c( )γ 7

3ε0ρ0
2

%

&
'

(

)
*

=
ES

(1+D)
55
32 3

!c( )γ 3

ρ0

=
ES

(2+D)
55
32 3

!
mc

γmc2( )
ρ0

γ 2

=Cq
γ 2Es

2

(2+D)ρ0  
Cq ≡

55
32 3

!
mc

= 3.8×10−13m  (for electrons)



Damping in the Vertical Plane 
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Synchrotron radiation 

ρ
 

1
γ
1

Energy lost along trajectory, so 
radiated power will reduce 
momentum along flight path 

 

dp
dt

≈ − P
c
θ̂

If we assume that the RF system restores the energy lost each turn, then 

Energy lost along the path 
Energy restored along nominal path     è”adiabatic damping”  

→Δy = Δ ′y = 0
ŝ

0p

xp

pp Δ+0

xp
0p
p

x x=!



Damping in the Vertical Plan (cont’d) 
•  The math follows much like the case of adiabatic 

damping, and we find that 

• Unlike the longitudinal plane, there is no heating term, so 
in the absence of coupling, the emittance would damp to 
zero in the vertical plane. 
•  This turns out to a problem for stability 
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1
τ y

=
1
2τ s

US

ES

=
1
2τε



Horizontal Plane 
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The horizontal plane has the same damping term as the vertical plane, but 
it has more contributions because the position depends on energy 

 

x = xβ + D


Es

′x = ′xβ + ′D


Es

betatron 
motion 

ΔE

xβ = a β cos ψ (s)+δ( ) ≡ a bC

′xβ = − a
β

α cos ψ (s)+δ( ) + sin ψ (s)+δ( )( ) ≡ − a
β

αC + S( )where 

If we radiate a photon of energy u, it will change the energy, but not the 
position or the angle. 

Δx = xβ + Δxβ( ) + D ε − u( )
Es

⎡

⎣
⎢

⎤

⎦
⎥ − xβ + D

ε
Es

⎡

⎣
⎢

⎤

⎦
⎥

= Δxβ − D
u
Es

= 0

Δxβ = D
u
Es

Δ ′x = Δ ′xβ − ′D
u
Es

= 0

Δ ′xβ = ′D
u
Es



Result in Horizontal Plane 
• Skipping a lot of math, we get 
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1
τ x

=
Us

2τ sEs

1−D( )

≈
Us

2τ sEs

  

where D ≡

1
ρ2 2κρD+ D

ρ

$

%
&

'

(
)ds!∫

1
ρ2 ds!∫

Same as longitudinal plane 

Separated function 
isomagnetic synchrotrons 



Equilibrium Emittance in X 
•  The equilibrium emittance is given by 

•  For a separated function, isomagnetic machine, this becomes 

•  With some handwaving, this can be approximated by 
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εx (∞)=Cq
γ 2

1−D( )

H
ρ 3 ds!∫
1
ρ2 ds!∫

where Cq ≡
55

32 3
"
mc

= 3.8×10−13m  (for electrons)

  
εx (∞) = Cq

γ 2

2πρ0 1−D( )
H

ρ
ds!∫

  

where D ≡

1
ρ2 2κρD+ D

ρ

$

%
&

'

(
)ds!∫

1
ρ2 ds!∫

H ≡γD2 +2αD -D +β -D 2

 
εx (∞) ≈ Cqγ

2 R
ρ0

1
ν x
3



Robinson’s Theorem 
•  Note: 

•  This is called Robinson’s theorem and it’s always true. For a 
separated function, isomagnetic lattice, it simplifies to 
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1
τε
+
1
τ x
+
1
τ y

=
Us

2τ sEs

2+D( )

+
Us

2τ sEs

1−D( )

+
Us

2τ sEs

=
2Us

τ sEs

1
τε

=
Us

τ sEs

1
τ x

=
1
τ y

=
Us

2τ sEs



Cheat Sheet Summary 
•  For a separated function, isomagnetic synchrotron 
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Us =
e2γ 4

3ε0ρ0

;     for electrons Us MeV[ ] = .0885
E 4 GeV[ ]
ρ0 m[ ]

τε ≈ τ s
ES

US

τ x ≈ 2τ s
ES

US

τ y ≈ τ x
1
τε
+

1
τ x
+

1
τ y

=
2US

τ sES

σε
2 (∞) ≈ Cq

γ 2Es
2

2ρ0

;   for electrons Cq ≡
55

32 3
!
mc

= 3.8×10−13m

εx (∞) ≈ Cqγ
2 R
ρ0

1
ν x

3

Energy lost per turn 

Longitudinal damping time 

Transverse damping times 

Robinson’s Theorem (always true) 

Equilibrium energy spread 

Equilibrium horizontal 
emittance 



Benefits of Damping 
•  Can inject off orbit and beam will damp down to equilibrium 

•  Don’t have to worry about painting or charge exchange like protons. 
•  Can inject over many turns, or even continuously. 

•  Beams will naturally “cool” (i.e. reduce their emittance in phase 
space) 

•  Example:  Beams injected off orbit into CESR 
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Considerations for e+e- Colliders 
•  In the case of proton-proton and proton-antiproton colliders, we assumed 

•  The optics were the same in the two planes 
•  The emittances were the same in the two planes 
•  The normalized emittance was preserved. 

•  This allowed us to write 

•  In general, none of this will be true for e+e- colliders.  
•  The emittance will be much smaller in the y plane 
•  Because the emittance is large in the x plane, we will not be able to “squeeze” the 

optics as far without hitting the aperture in the focusing triplet, so in general, β*x>β*y. 
•  We must write 
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L = f Nb

2

4πσ 2 = frev
1
4π

nbNb
2 γ
β *εN

 

L = f N1N2

4πσ xσ y

= frev
1
4π

nb
N1N2

βx
*εxβy

*εy

Unnormalized(!) 
emittance 



Synchrotron Light Sources 
• Shortly after the discovery of synchrotron radiation, it 

was realized that the intense light that was produced 
could be used for many things 
•  Radiography 
•  Crystallography 
•  Protein dynamics 
•  … 

•  The first “light sources” were parasitic on electron 
machines that were primarily used for other things. 

• As the demand grew, dedicated light sources began to 
emerge 

•  The figure or merit is the “brightness” 
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First Generation: Parasitic Operations 
•  These just used the parasitic synchrotron light produced by the 

bend dipoles 

•  Examples 
•  SURF (1961): 180 MeV UV synchrotron at NBS 
•  CESR (CHESS, 70’s): 6 GeV synchrotron at Cornell 
•  Numerous others 

•  Typically large emittances, which limited brightness of the beam 
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Second Generation: Dedicated 

• Examples: 
•  1981: 2 GeV SRS at Daresbury    (ε=106 nm-rad) 
•  1982: 800 MeV BESSY in Berlin    (ε=38 nm-rad) 
•  1990: SPEAR II becomes dedicated light source  (ε=160 nm-rad) 

• Often include “wigglers” to enhance SR 
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Typical 2nd Generation Parameters 
•  Beam sizes 

•  σy~1 mm   
•  σy’~.1 mrad   
•  σx~.1 mm 
•  σx‘~.03 mrad 

•  Broad spectrum 
 

•  High flux 
•  Typically 1013 photons/second/mradian for 3 GeV, 100 mA dipole source at Ecrit 

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Synchrotron Radiation 30 



Undulators 

•  In rest frame of electron 
 
•  Electron oscillates coherently with (contracted) structure, and releases photons 

with the same wavelength. 
•  In the lab frame, this is Doppler shifted, so 

•  So, λ on the order of 1cm èX-rays. 
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Bends, Undulators, and Wigglers* 
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3rd Generation (Undulator) Sources 
• High Brightness 

•  1019 compared to 1016 for 2nd generation sources 
•  Emittance ~1-20 nm-rad 

• A few Examples:  
•  CLS  
•  SPEAR-III 
•  Soleil 
•  Diamond 
•  APS 
•  PF  
•  NSLS  
•  BESSY  
•  Doris  
•  … 
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Fourth Generation 
•  Fourth Generation light sources generally utilize free 

electron lasers (FELs) to increase brightness by at least 
an order of magnitude over Third Generation light sources 
by using coherent production 
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Free-Electron Lasers - Oscillators

We can achieve coherence through
low-gain operation and a cavity, as
in a traditional laser

Can use low energy e beams to
make Visible-Microwave radiation

Requires reflective optics at the
wavelengths of interest ) no
X-rays
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Next Big Thing in the US. 
•  LCLS-II at SLAC 

•  4 GeV superconducting linac 
•  1 MHz operation 
•  X-rays up to 25 keV 
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Evolution of Parameters 

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Synchrotron Radiation 36 



Light Sources are a Huge (and growing) Industry 

•  Wikipedia lists about 60 light sources worldwide 
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